Previous association matrices were black and white:
Meg | Tay | Yat | Zili | Jess | |
---|---|---|---|---|---|
Meg | 0 | 5 | 4 | 1 | 1 |
Tay | 5 | 0 | 4 | 2 | 1 |
Yat | 4 | 4 | 0 | 0 | 0 |
Zili | 1 | 2 | 0 | 0 | 6 |
Jess | 1 | 1 | 0 | 6 | 0 |
We would need to turn this into an edge data set:
## # A tibble: 25 x 3## from to count## <chr> <chr> <dbl>## 1 Meg Meg 0## 2 Tay Meg 5## 3 Yat Meg 4## 4 Zili Meg 1## 5 Jess Meg 1## 6 Meg Tay 5## 7 Tay Tay 0## 8 Yat Tay 4## 9 Zili Tay 2## 10 Jess Tay 1## # … with 15 more rows
We need to decide what corresponds to a "connection".
Let's say they need to have called each other at least 4 times, to be considered connected.
d_edges_filter <- d_edges %>% filter(count > 3)
d_edges_filter
## # A tibble: 8 x 3## from to count## <chr> <chr> <dbl>## 1 Tay Meg 5## 2 Yat Meg 4## 3 Meg Tay 5## 4 Yat Tay 4## 5 Meg Yat 4## 6 Tay Yat 4## 7 Jess Zili 6## 8 Zili Jess 6
library(geomnet)set.seed(2019-10-09)ggplot(data = d_edges_filter, aes( from_id = from, to_id = to)) + geom_net( layout.alg = "kamadakawai", size = 2, labelon = TRUE, vjust = -0.6, ecolour = "grey60", directed =FALSE, fontsize = 3, ealpha = 0.5 ) + theme_net()
😨 SO let's try this with cross-currency rates across the globe!
😨 SO let's try this with cross-currency rates across the globe!
jsonlite
, processed with tidyverse
, lubridate
## # A tibble: 6 x 171## date AED AFN ALL AMD ANG AOA ARS AUD AWG AZN BAM BBD BDT## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 2018-05-14 3.67 71.2 106. 485. 1.79 230. 25.0 1.33 1.79 1.70 1.63 2 84.7## 2 2018-05-15 3.67 71.2 107. 485. 1.80 230. 24.1 1.34 1.79 1.70 1.64 2 84.8## 3 2018-05-16 3.67 71.0 108. 484. 1.80 232. 24.3 1.33 1.79 1.70 1.66 2 84.8## 4 2018-05-17 3.67 71.0 108. 483. 1.80 233. 24.3 1.33 1.79 1.70 1.66 2 84.8## 5 2018-05-18 3.67 71.0 108. 483. 1.80 233. 24.4 1.33 1.79 1.70 1.66 2 84.8## 6 2018-05-19 3.67 70.9 108. 482. 1.79 233. 24.4 1.33 1.79 1.70 1.66 2 84.8## # … with 157 more variables: BGN <dbl>, BHD <dbl>, BIF <dbl>, BMD <dbl>, BND <dbl>,## # BOB <dbl>, BRL <dbl>, BSD <dbl>, BTC <dbl>, BTN <dbl>, BWP <dbl>, BYN <dbl>,## # BZD <dbl>, CAD <dbl>, CDF <dbl>, CHF <dbl>, CLF <dbl>, CLP <dbl>, CNH <dbl>,## # CNY <dbl>, COP <dbl>, CRC <dbl>, CUC <dbl>, CUP <dbl>, CVE <dbl>, CZK <dbl>,## # DJF <dbl>, DKK <dbl>, DOP <dbl>, DZD <dbl>, EGP <dbl>, ERN <dbl>, ETB <dbl>,## # EUR <dbl>, FJD <dbl>, FKP <dbl>, GBP <dbl>, GEL <dbl>, GGP <dbl>, GHS <dbl>,## # GIP <dbl>, GMD <dbl>, GNF <dbl>, GTQ <dbl>, GYD <dbl>, HKD <dbl>, HNL <dbl>,## # HRK <dbl>, HTG <dbl>, HUF <dbl>, IDR <dbl>, ILS <dbl>, IMP <dbl>, INR <dbl>,## # IQD <dbl>, IRR <dbl>, ISK <dbl>, JEP <dbl>, JMD <dbl>, JOD <dbl>, JPY <dbl>,## # KES <dbl>, KGS <dbl>, KHR <dbl>, KMF <dbl>, KPW <dbl>, KRW <dbl>, KWD <dbl>,## # KYD <dbl>, KZT <dbl>, LAK <dbl>, LBP <dbl>, LKR <dbl>, LRD <dbl>, LSL <dbl>,## # LYD <dbl>, MAD <dbl>, MDL <dbl>, MGA <dbl>, MKD <dbl>, MMK <dbl>, MNT <dbl>,## # MOP <dbl>, MRO <dbl>, MRU <dbl>, MUR <dbl>, MVR <dbl>, MWK <dbl>, MXN <dbl>,## # MYR <dbl>, MZN <dbl>, NAD <dbl>, NGN <dbl>, NIO <dbl>, NOK <dbl>, NPR <dbl>,## # NZD <dbl>, OMR <dbl>, PAB <dbl>, PEN <dbl>, …
Make some plots (or google) to answer these questions
05:00
CoefVariation=σμ
CoefVariation=σμ
cv <- function(x){ sd(x)/mean(x)}rates %>% select(-date) %>% summarise_all(funs(cv))
## # A tibble: 1 x 170## AED AFN ALL AMD ANG AOA ARS AUD AWG AZN BAM BBD## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 2.22e-5 0.0111 0.00823 0.00276 0.0120 0.0535 0.116 0.0151 0.00136 3.28e-4 0.0106 0## # … with 158 more variables: BDT <dbl>, BGN <dbl>, BHD <dbl>, BIF <dbl>, BMD <dbl>,## # BND <dbl>, BOB <dbl>, BRL <dbl>, BSD <dbl>, BTC <dbl>, BTN <dbl>, BWP <dbl>,## # BYN <dbl>, BZD <dbl>, CAD <dbl>, CDF <dbl>, CHF <dbl>, CLF <dbl>, CLP <dbl>,## # CNH <dbl>, CNY <dbl>, COP <dbl>, CRC <dbl>, CUC <dbl>, CUP <dbl>, CVE <dbl>,## # CZK <dbl>, DJF <dbl>, DKK <dbl>, DOP <dbl>, DZD <dbl>, EGP <dbl>, ERN <dbl>,## # ETB <dbl>, EUR <dbl>, FJD <dbl>, FKP <dbl>, GBP <dbl>, GEL <dbl>, GGP <dbl>,## # GHS <dbl>, GIP <dbl>, GMD <dbl>, GNF <dbl>, GTQ <dbl>, GYD <dbl>, HKD <dbl>,## # HNL <dbl>, HRK <dbl>, HTG <dbl>, HUF <dbl>, IDR <dbl>, ILS <dbl>, IMP <dbl>,## # INR <dbl>, IQD <dbl>, IRR <dbl>, ISK <dbl>, JEP <dbl>, JMD <dbl>, JOD <dbl>,## # JPY <dbl>, KES <dbl>, KGS <dbl>, KHR <dbl>, KMF <dbl>, KPW <dbl>, KRW <dbl>,## # KWD <dbl>, KYD <dbl>, KZT <dbl>, LAK <dbl>, LBP <dbl>, LKR <dbl>, LRD <dbl>,## # LSL <dbl>, LYD <dbl>, MAD <dbl>, MDL <dbl>, MGA <dbl>, MKD <dbl>, MMK <dbl>,## # MNT <dbl>, MOP <dbl>, MRO <dbl>, MRU <dbl>, MUR <dbl>, MVR <dbl>, MWK <dbl>,## # MXN <dbl>, MYR <dbl>, MZN <dbl>, NAD <dbl>, NGN <dbl>, NIO <dbl>, NOK <dbl>,## # NPR <dbl>, NZD <dbl>, OMR <dbl>, PAB <dbl>, …
cv <- function(x){ sd(x)/mean(x)}rates %>% select(-date) %>% summarise_all(funs(cv)) %>% gather(key = curr, value = cv)
## # A tibble: 170 x 2## curr cv## <chr> <dbl>## 1 AED 0.0000222## 2 AFN 0.0111 ## 3 ALL 0.00823 ## 4 AMD 0.00276 ## 5 ANG 0.0120 ## 6 AOA 0.0535 ## 7 ARS 0.116 ## 8 AUD 0.0151 ## 9 AWG 0.00136 ## 10 AZN 0.000328 ## # … with 160 more rows
cv <- function(x){ sd(x)/mean(x)}rates %>% select(-date) %>% summarise_all(funs(cv)) %>% gather(key = curr, value = cv) %>% filter(cv > 0.0027)
## # A tibble: 130 x 2## curr cv## <chr> <dbl>## 1 AFN 0.0111 ## 2 ALL 0.00823## 3 AMD 0.00276## 4 ANG 0.0120 ## 5 AOA 0.0535 ## 6 ARS 0.116 ## 7 AUD 0.0151 ## 8 BAM 0.0106 ## 9 BDT 0.00404## 10 BGN 0.00932## # … with 120 more rows
# Compute coefficient of variation. We will only analyse # currencies that have changes substantially over this time.# Dates droppedcv <- function(x){ sd(x)/mean(x)}rates_sum <- rates %>% select(-date) %>% summarise_all(funs(cv)) %>% gather(key = curr, value = cv) %>% filter(cv > 0.0027)rates_sub <- select(rates, rates_sum$curr)head(rates_sub)
## # A tibble: 6 x 130## AFN ALL AMD ANG AOA ARS AUD BAM BDT BGN BIF BND BRL BTC## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 71.2 106. 485. 1.79 230. 25.0 1.33 1.63 84.7 1.64 1767. 1.33 3.62 0.000115## 2 71.2 107. 485. 1.80 230. 24.1 1.34 1.64 84.8 1.65 1773. 1.33 3.65 0.000118## 3 71.0 108. 484. 1.80 232. 24.3 1.33 1.66 84.8 1.66 1759. 1.33 3.68 0.000120## 4 71.0 108. 483. 1.80 233. 24.3 1.33 1.66 84.8 1.66 1759. 1.33 3.70 0.000124## 5 71.0 108. 483. 1.80 233. 24.4 1.33 1.66 84.8 1.66 1762. 1.33 3.74 0.000121## 6 70.9 108. 482. 1.79 233. 24.4 1.33 1.66 84.8 1.66 1761. 1.33 3.74 0.000121## # … with 116 more variables: BTN <dbl>, BWP <dbl>, BYN <dbl>, CAD <dbl>, CDF <dbl>,## # CHF <dbl>, CLF <dbl>, CLP <dbl>, CNH <dbl>, CNY <dbl>, COP <dbl>, CRC <dbl>,## # CVE <dbl>, CZK <dbl>, DKK <dbl>, DOP <dbl>, DZD <dbl>, ERN <dbl>, ETB <dbl>,## # EUR <dbl>, FJD <dbl>, FKP <dbl>, GBP <dbl>, GEL <dbl>, GGP <dbl>, GHS <dbl>,## # GIP <dbl>, GMD <dbl>, GNF <dbl>, GTQ <dbl>, GYD <dbl>, HNL <dbl>, HRK <dbl>,## # HTG <dbl>, HUF <dbl>, IDR <dbl>, ILS <dbl>, IMP <dbl>, INR <dbl>, IRR <dbl>,## # ISK <dbl>, JEP <dbl>, JMD <dbl>, JPY <dbl>, KES <dbl>, KMF <dbl>, KRW <dbl>,## # KZT <dbl>, LAK <dbl>, LKR <dbl>, LRD <dbl>, LSL <dbl>, LYD <dbl>, MAD <dbl>,## # MDL <dbl>, MGA <dbl>, MKD <dbl>, MMK <dbl>, MNT <dbl>, MRU <dbl>, MUR <dbl>,## # MVR <dbl>, MWK <dbl>, MXN <dbl>, MYR <dbl>, MZN <dbl>, NAD <dbl>, NIO <dbl>,## # NOK <dbl>, NPR <dbl>, NZD <dbl>, PEN <dbl>, PGK <dbl>, PHP <dbl>, PKR <dbl>,## # PLN <dbl>, PYG <dbl>, RON <dbl>, RSD <dbl>, RUB <dbl>, RWF <dbl>, SBD <dbl>,## # SCR <dbl>, SEK <dbl>, SGD <dbl>, SHP <dbl>, SLL <dbl>, SOS <dbl>, STD <dbl>,## # STN <dbl>, SZL <dbl>, THB <dbl>, TJS <dbl>, TMT <dbl>, TND <dbl>, TOP <dbl>,## # TRY <dbl>, TWD <dbl>, UAH <dbl>, UGX <dbl>, …
Some of the currencies ... aren't really currencies. Google these ones: XAG, XDR, XPT - what are they?
02:00
# Remove non-currenciesrates_dropped <- rates_sub %>% select(-ALL, -XAG, -XDR, -XPT)
XAG is Gold XPT is Platinum XDR is special drawing rights
To examine overall trend regardless of actual USD cross rate, standardise the values to have mean 0 and standard deviation 1.
scale01 <- function(x) (x-mean(x))/sd(x)rates_scaled <- rates_dropped %>% mutate_all(funs(scale01))
mutate_all()
?Instead of:
rates_dropped %>% mutate(AFN = scale01(AFN), AMD = scale01(AMD), ANG = scale01(ANG), ... ...)
mutate_all()
?We can write:
rates_scaled <- rates_dropped %>% mutate_all(funs(scale01))
scoped variants
- and there are more:*_if
= Do this thing if some condition is met*_at
= Do this thing at these select variables*_all
= Do this thing for all variablesmutate_if()
iris %>% mutate_if(is.numeric, scale01)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species## 1 -0.89767388 1.01560199 -1.33575163 -1.3110521482 setosa## 2 -1.13920048 -0.13153881 -1.33575163 -1.3110521482 setosa## 3 -1.38072709 0.32731751 -1.39239929 -1.3110521482 setosa## 4 -1.50149039 0.09788935 -1.27910398 -1.3110521482 setosa## 5 -1.01843718 1.24503015 -1.33575163 -1.3110521482 setosa## 6 -0.53538397 1.93331463 -1.16580868 -1.0486667950 setosa## 7 -1.50149039 0.78617383 -1.33575163 -1.1798594716 setosa## 8 -1.01843718 0.78617383 -1.27910398 -1.3110521482 setosa## 9 -1.74301699 -0.36096697 -1.33575163 -1.3110521482 setosa## 10 -1.13920048 0.09788935 -1.27910398 -1.4422448248 setosa## 11 -0.53538397 1.47445831 -1.27910398 -1.3110521482 setosa## 12 -1.25996379 0.78617383 -1.22245633 -1.3110521482 setosa## 13 -1.25996379 -0.13153881 -1.33575163 -1.4422448248 setosa## 14 -1.86378030 -0.13153881 -1.50569459 -1.4422448248 setosa## 15 -0.05233076 2.16274279 -1.44904694 -1.3110521482 setosa## 16 -0.17309407 3.08045544 -1.27910398 -1.0486667950 setosa## 17 -0.53538397 1.93331463 -1.39239929 -1.0486667950 setosa## 18 -0.89767388 1.01560199 -1.33575163 -1.1798594716 setosa## 19 -0.17309407 1.70388647 -1.16580868 -1.1798594716 setosa## 20 -0.89767388 1.70388647 -1.27910398 -1.1798594716 setosa## 21 -0.53538397 0.78617383 -1.16580868 -1.3110521482 setosa## 22 -0.89767388 1.47445831 -1.27910398 -1.0486667950 setosa## 23 -1.50149039 1.24503015 -1.56234224 -1.3110521482 setosa## 24 -0.89767388 0.55674567 -1.16580868 -0.9174741184 setosa## 25 -1.25996379 0.78617383 -1.05251337 -1.3110521482 setosa## 26 -1.01843718 -0.13153881 -1.22245633 -1.3110521482 setosa## 27 -1.01843718 0.78617383 -1.22245633 -1.0486667950 setosa## 28 -0.77691058 1.01560199 -1.27910398 -1.3110521482 setosa## 29 -0.77691058 0.78617383 -1.33575163 -1.3110521482 setosa## 30 -1.38072709 0.32731751 -1.22245633 -1.3110521482 setosa## 31 -1.25996379 0.09788935 -1.22245633 -1.3110521482 setosa## 32 -0.53538397 0.78617383 -1.27910398 -1.0486667950 setosa## 33 -0.77691058 2.39217095 -1.27910398 -1.4422448248 setosa## 34 -0.41462067 2.62159911 -1.33575163 -1.3110521482 setosa## 35 -1.13920048 0.09788935 -1.27910398 -1.3110521482 setosa## 36 -1.01843718 0.32731751 -1.44904694 -1.3110521482 setosa## 37 -0.41462067 1.01560199 -1.39239929 -1.3110521482 setosa## 38 -1.13920048 1.24503015 -1.33575163 -1.4422448248 setosa## 39 -1.74301699 -0.13153881 -1.39239929 -1.3110521482 setosa## 40 -0.89767388 0.78617383 -1.27910398 -1.3110521482 setosa## 41 -1.01843718 1.01560199 -1.39239929 -1.1798594716 setosa## 42 -1.62225369 -1.73753594 -1.39239929 -1.1798594716 setosa## 43 -1.74301699 0.32731751 -1.39239929 -1.3110521482 setosa## 44 -1.01843718 1.01560199 -1.22245633 -0.7862814418 setosa## 45 -0.89767388 1.70388647 -1.05251337 -1.0486667950 setosa## 46 -1.25996379 -0.13153881 -1.33575163 -1.1798594716 setosa## 47 -0.89767388 1.70388647 -1.22245633 -1.3110521482 setosa## 48 -1.50149039 0.32731751 -1.33575163 -1.3110521482 setosa## 49 -0.65614727 1.47445831 -1.27910398 -1.3110521482 setosa## 50 -1.01843718 0.55674567 -1.33575163 -1.3110521482 setosa## 51 1.39682886 0.32731751 0.53362088 0.2632599711 versicolor## 52 0.67224905 0.32731751 0.42032558 0.3944526477 versicolor## 53 1.27606556 0.09788935 0.64691619 0.3944526477 versicolor## 54 -0.41462067 -1.73753594 0.13708732 0.1320672944 versicolor## 55 0.79301235 -0.59039513 0.47697323 0.3944526477 versicolor## 56 -0.17309407 -0.59039513 0.42032558 0.1320672944 versicolor## 57 0.55148575 0.55674567 0.53362088 0.5256453243 versicolor## 58 -1.13920048 -1.50810778 -0.25944625 -0.2615107354 versicolor## 59 0.91377565 -0.36096697 0.47697323 0.1320672944 versicolor## 60 -0.77691058 -0.81982329 0.08043967 0.2632599711 versicolor## 61 -1.01843718 -2.42582042 -0.14615094 -0.2615107354 versicolor## 62 0.06843254 -0.13153881 0.25038262 0.3944526477 versicolor## 63 0.18919584 -1.96696410 0.13708732 -0.2615107354 versicolor## 64 0.30995914 -0.36096697 0.53362088 0.2632599711 versicolor## 65 -0.29385737 -0.36096697 -0.08950329 0.1320672944 versicolor## 66 1.03453895 0.09788935 0.36367793 0.2632599711 versicolor## 67 -0.29385737 -0.13153881 0.42032558 0.3944526477 versicolor## 68 -0.05233076 -0.81982329 0.19373497 -0.2615107354 versicolor## 69 0.43072244 -1.96696410 0.42032558 0.3944526477 versicolor## 70 -0.29385737 -1.27867961 0.08043967 -0.1303180588 versicolor## 71 0.06843254 0.32731751 0.59026853 0.7880306775 versicolor## 72 0.30995914 -0.59039513 0.13708732 0.1320672944 versicolor## 73 0.55148575 -1.27867961 0.64691619 0.3944526477 versicolor## 74 0.30995914 -0.59039513 0.53362088 0.0008746178 versicolor## 75 0.67224905 -0.36096697 0.30703027 0.1320672944 versicolor## 76 0.91377565 -0.13153881 0.36367793 0.2632599711 versicolor## 77 1.15530226 -0.59039513 0.59026853 0.2632599711 versicolor## 78 1.03453895 -0.13153881 0.70356384 0.6568380009 versicolor## 79 0.18919584 -0.36096697 0.42032558 0.3944526477 versicolor## 80 -0.17309407 -1.04925145 -0.14615094 -0.2615107354 versicolor## 81 -0.41462067 -1.50810778 0.02379201 -0.1303180588 versicolor## 82 -0.41462067 -1.50810778 -0.03285564 -0.2615107354 versicolor## 83 -0.05233076 -0.81982329 0.08043967 0.0008746178 versicolor## 84 0.18919584 -0.81982329 0.76021149 0.5256453243 versicolor## 85 -0.53538397 -0.13153881 0.42032558 0.3944526477 versicolor## 86 0.18919584 0.78617383 0.42032558 0.5256453243 versicolor## 87 1.03453895 0.09788935 0.53362088 0.3944526477 versicolor## 88 0.55148575 -1.73753594 0.36367793 0.1320672944 versicolor## 89 -0.29385737 -0.13153881 0.19373497 0.1320672944 versicolor## 90 -0.41462067 -1.27867961 0.13708732 0.1320672944 versicolor## 91 -0.41462067 -1.04925145 0.36367793 0.0008746178 versicolor## 92 0.30995914 -0.13153881 0.47697323 0.2632599711 versicolor## 93 -0.05233076 -1.04925145 0.13708732 0.0008746178 versicolor## 94 -1.01843718 -1.73753594 -0.25944625 -0.2615107354 versicolor## 95 -0.29385737 -0.81982329 0.25038262 0.1320672944 versicolor## 96 -0.17309407 -0.13153881 0.25038262 0.0008746178 versicolor## 97 -0.17309407 -0.36096697 0.25038262 0.1320672944 versicolor## 98 0.43072244 -0.36096697 0.30703027 0.1320672944 versicolor## 99 -0.89767388 -1.27867961 -0.42938920 -0.1303180588 versicolor## 100 -0.17309407 -0.59039513 0.19373497 0.1320672944 versicolor## 101 0.55148575 0.55674567 1.27004036 1.7063794137 virginica## 102 -0.05233076 -0.81982329 0.76021149 0.9192233541 virginica## 103 1.51759216 -0.13153881 1.21339271 1.1816087073 virginica## 104 0.55148575 -0.36096697 1.04344975 0.7880306775 virginica## 105 0.79301235 -0.13153881 1.15674505 1.3128013839 virginica## 106 2.12140867 -0.13153881 1.60992627 1.1816087073 virginica## 107 -1.13920048 -1.27867961 0.42032558 0.6568380009 virginica## 108 1.75911877 -0.36096697 1.43998331 0.7880306775 virginica## 109 1.03453895 -1.27867961 1.15674505 0.7880306775 virginica## 110 1.63835547 1.24503015 1.32668801 1.7063794137 virginica## 111 0.79301235 0.32731751 0.76021149 1.0504160307 virginica## 112 0.67224905 -0.81982329 0.87350679 0.9192233541 virginica## 113 1.15530226 -0.13153881 0.98680210 1.1816087073 virginica## 114 -0.17309407 -1.27867961 0.70356384 1.0504160307 virginica## 115 -0.05233076 -0.59039513 0.76021149 1.5751867371 virginica## 116 0.67224905 0.32731751 0.87350679 1.4439940605 virginica## 117 0.79301235 -0.13153881 0.98680210 0.7880306775 virginica## 118 2.24217198 1.70388647 1.66657392 1.3128013839 virginica## 119 2.24217198 -1.04925145 1.77986923 1.4439940605 virginica## 120 0.18919584 -1.96696410 0.70356384 0.3944526477 virginica## 121 1.27606556 0.32731751 1.10009740 1.4439940605 virginica## 122 -0.29385737 -0.59039513 0.64691619 1.0504160307 virginica## 123 2.24217198 -0.59039513 1.66657392 1.0504160307 virginica## 124 0.55148575 -0.81982329 0.64691619 0.7880306775 virginica## 125 1.03453895 0.55674567 1.10009740 1.1816087073 virginica## 126 1.63835547 0.32731751 1.27004036 0.7880306775 virginica## 127 0.43072244 -0.59039513 0.59026853 0.7880306775 virginica## 128 0.30995914 -0.13153881 0.64691619 0.7880306775 virginica## 129 0.67224905 -0.59039513 1.04344975 1.1816087073 virginica## 130 1.63835547 -0.13153881 1.15674505 0.5256453243 virginica## 131 1.87988207 -0.59039513 1.32668801 0.9192233541 virginica## 132 2.48369858 1.70388647 1.49663097 1.0504160307 virginica## 133 0.67224905 -0.59039513 1.04344975 1.3128013839 virginica## 134 0.55148575 -0.59039513 0.76021149 0.3944526477 virginica## 135 0.30995914 -1.04925145 1.04344975 0.2632599711 virginica## 136 2.24217198 -0.13153881 1.32668801 1.4439940605 virginica## 137 0.55148575 0.78617383 1.04344975 1.5751867371 virginica## 138 0.67224905 0.09788935 0.98680210 0.7880306775 virginica## 139 0.18919584 -0.13153881 0.59026853 0.7880306775 virginica## 140 1.27606556 0.09788935 0.93015445 1.1816087073 virginica## 141 1.03453895 0.09788935 1.04344975 1.5751867371 virginica## 142 1.27606556 0.09788935 0.76021149 1.4439940605 virginica## 143 -0.05233076 -0.81982329 0.76021149 0.9192233541 virginica## 144 1.15530226 0.32731751 1.21339271 1.4439940605 virginica## 145 1.03453895 0.55674567 1.10009740 1.7063794137 virginica## 146 1.03453895 -0.13153881 0.81685914 1.4439940605 virginica## 147 0.55148575 -1.27867961 0.70356384 0.9192233541 virginica## 148 0.79301235 -0.13153881 0.81685914 1.0504160307 virginica## 149 0.43072244 0.78617383 0.93015445 1.4439940605 virginica## 150 0.06843254 -0.13153881 0.76021149 0.7880306775 virginica
mutate_at()
iris %>% mutate_at(vars(Sepal.Width, Sepal.Length), scale01)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species## 1 -0.89767388 1.01560199 1.4 0.2 setosa## 2 -1.13920048 -0.13153881 1.4 0.2 setosa## 3 -1.38072709 0.32731751 1.3 0.2 setosa## 4 -1.50149039 0.09788935 1.5 0.2 setosa## 5 -1.01843718 1.24503015 1.4 0.2 setosa## 6 -0.53538397 1.93331463 1.7 0.4 setosa## 7 -1.50149039 0.78617383 1.4 0.3 setosa## 8 -1.01843718 0.78617383 1.5 0.2 setosa## 9 -1.74301699 -0.36096697 1.4 0.2 setosa## 10 -1.13920048 0.09788935 1.5 0.1 setosa## 11 -0.53538397 1.47445831 1.5 0.2 setosa## 12 -1.25996379 0.78617383 1.6 0.2 setosa## 13 -1.25996379 -0.13153881 1.4 0.1 setosa## 14 -1.86378030 -0.13153881 1.1 0.1 setosa## 15 -0.05233076 2.16274279 1.2 0.2 setosa## 16 -0.17309407 3.08045544 1.5 0.4 setosa## 17 -0.53538397 1.93331463 1.3 0.4 setosa## 18 -0.89767388 1.01560199 1.4 0.3 setosa## 19 -0.17309407 1.70388647 1.7 0.3 setosa## 20 -0.89767388 1.70388647 1.5 0.3 setosa## 21 -0.53538397 0.78617383 1.7 0.2 setosa## 22 -0.89767388 1.47445831 1.5 0.4 setosa## 23 -1.50149039 1.24503015 1.0 0.2 setosa## 24 -0.89767388 0.55674567 1.7 0.5 setosa## 25 -1.25996379 0.78617383 1.9 0.2 setosa## 26 -1.01843718 -0.13153881 1.6 0.2 setosa## 27 -1.01843718 0.78617383 1.6 0.4 setosa## 28 -0.77691058 1.01560199 1.5 0.2 setosa## 29 -0.77691058 0.78617383 1.4 0.2 setosa## 30 -1.38072709 0.32731751 1.6 0.2 setosa## 31 -1.25996379 0.09788935 1.6 0.2 setosa## 32 -0.53538397 0.78617383 1.5 0.4 setosa## 33 -0.77691058 2.39217095 1.5 0.1 setosa## 34 -0.41462067 2.62159911 1.4 0.2 setosa## 35 -1.13920048 0.09788935 1.5 0.2 setosa## 36 -1.01843718 0.32731751 1.2 0.2 setosa## 37 -0.41462067 1.01560199 1.3 0.2 setosa## 38 -1.13920048 1.24503015 1.4 0.1 setosa## 39 -1.74301699 -0.13153881 1.3 0.2 setosa## 40 -0.89767388 0.78617383 1.5 0.2 setosa## 41 -1.01843718 1.01560199 1.3 0.3 setosa## 42 -1.62225369 -1.73753594 1.3 0.3 setosa## 43 -1.74301699 0.32731751 1.3 0.2 setosa## 44 -1.01843718 1.01560199 1.6 0.6 setosa## 45 -0.89767388 1.70388647 1.9 0.4 setosa## 46 -1.25996379 -0.13153881 1.4 0.3 setosa## 47 -0.89767388 1.70388647 1.6 0.2 setosa## 48 -1.50149039 0.32731751 1.4 0.2 setosa## 49 -0.65614727 1.47445831 1.5 0.2 setosa## 50 -1.01843718 0.55674567 1.4 0.2 setosa## 51 1.39682886 0.32731751 4.7 1.4 versicolor## 52 0.67224905 0.32731751 4.5 1.5 versicolor## 53 1.27606556 0.09788935 4.9 1.5 versicolor## 54 -0.41462067 -1.73753594 4.0 1.3 versicolor## 55 0.79301235 -0.59039513 4.6 1.5 versicolor## 56 -0.17309407 -0.59039513 4.5 1.3 versicolor## 57 0.55148575 0.55674567 4.7 1.6 versicolor## 58 -1.13920048 -1.50810778 3.3 1.0 versicolor## 59 0.91377565 -0.36096697 4.6 1.3 versicolor## 60 -0.77691058 -0.81982329 3.9 1.4 versicolor## 61 -1.01843718 -2.42582042 3.5 1.0 versicolor## 62 0.06843254 -0.13153881 4.2 1.5 versicolor## 63 0.18919584 -1.96696410 4.0 1.0 versicolor## 64 0.30995914 -0.36096697 4.7 1.4 versicolor## 65 -0.29385737 -0.36096697 3.6 1.3 versicolor## 66 1.03453895 0.09788935 4.4 1.4 versicolor## 67 -0.29385737 -0.13153881 4.5 1.5 versicolor## 68 -0.05233076 -0.81982329 4.1 1.0 versicolor## 69 0.43072244 -1.96696410 4.5 1.5 versicolor## 70 -0.29385737 -1.27867961 3.9 1.1 versicolor## 71 0.06843254 0.32731751 4.8 1.8 versicolor## 72 0.30995914 -0.59039513 4.0 1.3 versicolor## 73 0.55148575 -1.27867961 4.9 1.5 versicolor## 74 0.30995914 -0.59039513 4.7 1.2 versicolor## 75 0.67224905 -0.36096697 4.3 1.3 versicolor## 76 0.91377565 -0.13153881 4.4 1.4 versicolor## 77 1.15530226 -0.59039513 4.8 1.4 versicolor## 78 1.03453895 -0.13153881 5.0 1.7 versicolor## 79 0.18919584 -0.36096697 4.5 1.5 versicolor## 80 -0.17309407 -1.04925145 3.5 1.0 versicolor## 81 -0.41462067 -1.50810778 3.8 1.1 versicolor## 82 -0.41462067 -1.50810778 3.7 1.0 versicolor## 83 -0.05233076 -0.81982329 3.9 1.2 versicolor## 84 0.18919584 -0.81982329 5.1 1.6 versicolor## 85 -0.53538397 -0.13153881 4.5 1.5 versicolor## 86 0.18919584 0.78617383 4.5 1.6 versicolor## 87 1.03453895 0.09788935 4.7 1.5 versicolor## 88 0.55148575 -1.73753594 4.4 1.3 versicolor## 89 -0.29385737 -0.13153881 4.1 1.3 versicolor## 90 -0.41462067 -1.27867961 4.0 1.3 versicolor## 91 -0.41462067 -1.04925145 4.4 1.2 versicolor## 92 0.30995914 -0.13153881 4.6 1.4 versicolor## 93 -0.05233076 -1.04925145 4.0 1.2 versicolor## 94 -1.01843718 -1.73753594 3.3 1.0 versicolor## 95 -0.29385737 -0.81982329 4.2 1.3 versicolor## 96 -0.17309407 -0.13153881 4.2 1.2 versicolor## 97 -0.17309407 -0.36096697 4.2 1.3 versicolor## 98 0.43072244 -0.36096697 4.3 1.3 versicolor## 99 -0.89767388 -1.27867961 3.0 1.1 versicolor## 100 -0.17309407 -0.59039513 4.1 1.3 versicolor## 101 0.55148575 0.55674567 6.0 2.5 virginica## 102 -0.05233076 -0.81982329 5.1 1.9 virginica## 103 1.51759216 -0.13153881 5.9 2.1 virginica## 104 0.55148575 -0.36096697 5.6 1.8 virginica## 105 0.79301235 -0.13153881 5.8 2.2 virginica## 106 2.12140867 -0.13153881 6.6 2.1 virginica## 107 -1.13920048 -1.27867961 4.5 1.7 virginica## 108 1.75911877 -0.36096697 6.3 1.8 virginica## 109 1.03453895 -1.27867961 5.8 1.8 virginica## 110 1.63835547 1.24503015 6.1 2.5 virginica## 111 0.79301235 0.32731751 5.1 2.0 virginica## 112 0.67224905 -0.81982329 5.3 1.9 virginica## 113 1.15530226 -0.13153881 5.5 2.1 virginica## 114 -0.17309407 -1.27867961 5.0 2.0 virginica## 115 -0.05233076 -0.59039513 5.1 2.4 virginica## 116 0.67224905 0.32731751 5.3 2.3 virginica## 117 0.79301235 -0.13153881 5.5 1.8 virginica## 118 2.24217198 1.70388647 6.7 2.2 virginica## 119 2.24217198 -1.04925145 6.9 2.3 virginica## 120 0.18919584 -1.96696410 5.0 1.5 virginica## 121 1.27606556 0.32731751 5.7 2.3 virginica## 122 -0.29385737 -0.59039513 4.9 2.0 virginica## 123 2.24217198 -0.59039513 6.7 2.0 virginica## 124 0.55148575 -0.81982329 4.9 1.8 virginica## 125 1.03453895 0.55674567 5.7 2.1 virginica## 126 1.63835547 0.32731751 6.0 1.8 virginica## 127 0.43072244 -0.59039513 4.8 1.8 virginica## 128 0.30995914 -0.13153881 4.9 1.8 virginica## 129 0.67224905 -0.59039513 5.6 2.1 virginica## 130 1.63835547 -0.13153881 5.8 1.6 virginica## 131 1.87988207 -0.59039513 6.1 1.9 virginica## 132 2.48369858 1.70388647 6.4 2.0 virginica## 133 0.67224905 -0.59039513 5.6 2.2 virginica## 134 0.55148575 -0.59039513 5.1 1.5 virginica## 135 0.30995914 -1.04925145 5.6 1.4 virginica## 136 2.24217198 -0.13153881 6.1 2.3 virginica## 137 0.55148575 0.78617383 5.6 2.4 virginica## 138 0.67224905 0.09788935 5.5 1.8 virginica## 139 0.18919584 -0.13153881 4.8 1.8 virginica## 140 1.27606556 0.09788935 5.4 2.1 virginica## 141 1.03453895 0.09788935 5.6 2.4 virginica## 142 1.27606556 0.09788935 5.1 2.3 virginica## 143 -0.05233076 -0.81982329 5.1 1.9 virginica## 144 1.15530226 0.32731751 5.9 2.3 virginica## 145 1.03453895 0.55674567 5.7 2.5 virginica## 146 1.03453895 -0.13153881 5.2 2.3 virginica## 147 0.55148575 -1.27867961 5.0 1.9 virginica## 148 0.79301235 -0.13153881 5.2 2.0 virginica## 149 0.43072244 0.78617383 5.4 2.3 virginica## 150 0.06843254 -0.13153881 5.1 1.8 virginica
mutate()
filter()
select()
summarise()
group_by()
Euclidean distance is used to compute similarity between all pairs of currencies.
dij=√∑ti=1(C1i−C2i)2
# Compute distance between currencies# Need to transpose! Turn matrix around, rows <--> columnsrates_dropped_t <- t(rates_dropped) %>% data.frame()dates_dist <- as.matrix(dist(rates_dropped_t, diag = TRUE, upper = TRUE))colnames(dates_dist) <- as.factor(colnames(rates_dropped))rownames(dates_dist) <- as.factor(colnames(rates_dropped))quantile(dates_dist, probs = c(0, 0.25, 0.5, 0.75, 1))
## 0% 25% 50% 75% 100% ## 0.0000 172.2863 1074.7584 11948.3344 1449147.7492
Here only the pairs of currencies who are closer than "4" to each other are kept.
d_zero <- dd_zero_tbl <- d_zero %>% as_tibble() %>% mutate(curr1=rownames(d_zero)) %>% gather(curr2, dst, -curr1) %>% filter(dst<3) %>% filter(curr1 != curr2)
Here only the pairs of currencies who are closer than "4" to each other are kept.
d_zero_tbl
## # A tibble: 12 x 3## curr1 curr2 dst## <chr> <chr> <dbl>## 1 Zili Meg 1## 2 Jess Meg 1## 3 Zili Tay 2## 4 Jess Tay 1## 5 Zili Yat 0## 6 Jess Yat 0## 7 Meg Zili 1## 8 Tay Zili 2## 9 Yat Zili 0## 10 Meg Jess 1## 11 Tay Jess 1## 12 Yat Jess 0
# Make networklibrary(geomnet)set.seed(10052016)ggplot(data = d_zero_tbl, aes( from_id = curr1, to_id = curr2 )) + geom_net( layout.alg = "kamadakawai", size = 2, labelon = TRUE, vjust = -0.6, ecolour = "grey60", directed = FALSE, fontsize = 3, ealpha = 0.5 ) + theme_net() + theme( legend.position = "bottom" )
This work is licensed under a Creative Commons Attribution 4.0 International License.
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |