Presentation & grammar:
Find team members, and potential topics to study (ed quiz will be posted soon)
For two variables X,Y, correlation is:
r=∑ni=1(xi−¯x)(yi−¯y)√∑ni=1(xi−¯x)2√∑ni=1(yi−¯y)2=cov(X,Y)sxsy
pp <- read_csv("data/paris-paintings.csv", na = c("n/a", "", "NA"))pp
## # A tibble: 3,393 x 61## name sale lot position dealer year origin_author origin_cat school_pntg## <chr> <chr> <chr> <dbl> <chr> <dbl> <chr> <chr> <chr> ## 1 L176… L1764 2 0.0328 L 1764 F O F ## 2 L176… L1764 3 0.0492 L 1764 I O I ## 3 L176… L1764 4 0.0656 L 1764 X O D/FL ## 4 L176… L1764 5 0.0820 L 1764 F O F ## 5 L176… L1764 5 0.0820 L 1764 F O F ## 6 L176… L1764 6 0.0984 L 1764 X O I ## 7 L176… L1764 7 0.115 L 1764 F O F ## 8 L176… L1764 7 0.115 L 1764 F O F ## 9 L176… L1764 8 0.131 L 1764 X O I ## 10 L176… L1764 9 0.148 L 1764 D/FL O D/FL ## # … with 3,383 more rows, and 52 more variables: diff_origin <dbl>, logprice <dbl>,## # price <dbl>, count <dbl>, subject <chr>, authorstandard <chr>, artistliving <dbl>,## # authorstyle <chr>, author <chr>, winningbidder <chr>, winningbiddertype <chr>,## # endbuyer <chr>, Interm <dbl>, type_intermed <chr>, Height_in <dbl>, Width_in <dbl>,## # Surface_Rect <dbl>, Diam_in <dbl>, Surface_Rnd <dbl>, Shape <chr>, Surface <dbl>,## # material <chr>, mat <chr>, materialCat <chr>, quantity <dbl>, nfigures <dbl>,## # engraved <dbl>, original <dbl>, prevcoll <dbl>, othartist <dbl>, paired <dbl>,## # figures <dbl>, finished <dbl>, lrgfont <dbl>, relig <dbl>, landsALL <dbl>,## # lands_sc <dbl>, lands_elem <dbl>, lands_figs <dbl>, lands_ment <dbl>, arch <dbl>,## # mytho <dbl>, peasant <dbl>, othgenre <dbl>, singlefig <dbl>, portrait <dbl>,## # still_life <dbl>, discauth <dbl>, history <dbl>, allegory <dbl>, pastorale <dbl>,## # other <dbl>
ggplot(data = pp, aes(x = Width_in, y = Height_in)) + geom_point() + geom_smooth(method = "lm") # lm for linear model
lm(<FORMULA>, <DATA>)
<FORMULA>
RESPONSE ~ EXPLANATORY VARIABLES
m_ht_wt <- lm(Height_in ~ Width_in, data = pp)m_ht_wt
## ## Call:## lm(formula = Height_in ~ Width_in, data = pp)## ## Coefficients:## (Intercept) Width_in ## 3.6214 0.7808
tidy(<MODEL OBJECT>)
tidy(m_ht_wt)
## # A tibble: 2 x 5## term estimate std.error statistic p.value## <chr> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 3.62 0.254 14.3 8.82e-45## 2 Width_in 0.781 0.00950 82.1 0.
glance(<MODEL OBJECT>)
glance(m_ht_wt)
## # A tibble: 1 x 11## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance## <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl>## 1 0.683 0.683 8.30 6749. 0 2 -11083. 22173. 22191. 216055.## # … with 1 more variable: df.residual <int>
augment<MODEL>>
or
augment(<MODEL>, <DATA>)
augment(m_ht_wt)
## # A tibble: 3,135 x 10## .rownames Height_in Width_in .fitted .se.fit .resid .hat .sigma .cooksd .std.resid## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 1 37 29.5 26.7 0.166 10.3 0.000399 8.30 3.10e-4 1.25 ## 2 2 18 14 14.6 0.165 3.45 0.000396 8.31 3.42e-5 0.415 ## 3 3 13 16 16.1 0.158 -3.11 0.000361 8.31 2.54e-5 -0.375 ## 4 4 14 18 17.7 0.152 -3.68 0.000337 8.31 3.30e-5 -0.443 ## 5 5 14 18 17.7 0.152 -3.68 0.000337 8.31 3.30e-5 -0.443 ## 6 6 7 10 11.4 0.185 -4.43 0.000498 8.31 7.09e-5 -0.534 ## 7 7 6 13 13.8 0.170 -7.77 0.000418 8.30 1.83e-4 -0.936 ## 8 8 6 13 13.8 0.170 -7.77 0.000418 8.30 1.83e-4 -0.936 ## 9 9 15 15 15.3 0.161 -0.333 0.000377 8.31 3.04e-7 -0.0401## 10 10 9 7 9.09 0.204 -0.0870 0.000601 8.31 3.30e-8 -0.0105## # … with 3,125 more rows
include_graphics("images/blind-men-and-the-elephant.png")
Image source: https://balajiviswanathan.quora.com/Lessons-from-the-Blind-men-and-the-elephant
gapminder
Contains subset of the data on five year intervals from 1952 to 2007.
library(gapminder)glimpse(gapminder)
## Observations: 1,704## Variables: 6## $ country <fct> Afghanistan, Afghanistan, Afghanistan, Afghanistan, Afghanistan, Afgh…## $ continent <fct> Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asi…## $ year <int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 200…## $ lifeExp <dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.822, 41.67…## $ pop <int> 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12881816, 1…## $ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, 978.0114,…
Australia was already had one of the top life expectancies in the 1950s.
oz <- gapminder %>% filter(country == "Australia")oz
## # A tibble: 12 x 6## country continent year lifeExp pop gdpPercap## <fct> <fct> <int> <dbl> <int> <dbl>## 1 Australia Oceania 1952 69.1 8691212 10040.## 2 Australia Oceania 1957 70.3 9712569 10950.## 3 Australia Oceania 1962 70.9 10794968 12217.## 4 Australia Oceania 1967 71.1 11872264 14526.## 5 Australia Oceania 1972 71.9 13177000 16789.## 6 Australia Oceania 1977 73.5 14074100 18334.## 7 Australia Oceania 1982 74.7 15184200 19477.## 8 Australia Oceania 1987 76.3 16257249 21889.## 9 Australia Oceania 1992 77.6 17481977 23425.## 10 Australia Oceania 1997 78.8 18565243 26998.## 11 Australia Oceania 2002 80.4 19546792 30688.## 12 Australia Oceania 2007 81.2 20434176 34435.
ggplot(data = oz, aes(x = year, y = lifeExp)) + geom_line()
oz_lm <- lm(lifeExp ~ year, data = oz)oz_lm
## ## Call:## lm(formula = lifeExp ~ year, data = oz)## ## Coefficients:## (Intercept) year ## -376.1163 0.2277
tidy(oz_lm)
## # A tibble: 2 x 5## term estimate std.error statistic p.value## <chr> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) -376. 20.5 -18.3 5.09e- 9## 2 year 0.228 0.0104 21.9 8.67e-10
ˆlifeExp=−376.1163−0.2277 year
Let us treat 1950 is the first year, so for model fitting we are going to shift year to begin in 1950, makes interpretability easier.
gap <- gapminder %>% mutate(year1950 = year - 1950)oz <- gap %>% filter(country == "Australia")
oz_lm <- lm(lifeExp ~ year1950, data = oz)oz_lm
## ## Call:## lm(formula = lifeExp ~ year1950, data = oz)## ## Coefficients:## (Intercept) year1950 ## 67.9451 0.2277
tidy(oz_lm)
## # A tibble: 2 x 5## term estimate std.error statistic p.value## <chr> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 67.9 0.355 192. 3.70e-19## 2 year1950 0.228 0.0104 21.9 8.67e-10
ˆlifeExp=67.9+0.2277 year
oz_aug <- augment(oz_lm, oz)oz_aug
## # A tibble: 12 x 14## country continent year lifeExp pop gdpPercap year1950 .fitted .se.fit .resid## <fct> <fct> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 Austra… Oceania 1952 69.1 8.69e6 10040. 2 68.4 0.337 0.719 ## 2 Austra… Oceania 1957 70.3 9.71e6 10950. 7 69.5 0.294 0.791 ## 3 Austra… Oceania 1962 70.9 1.08e7 12217. 12 70.7 0.255 0.252 ## 4 Austra… Oceania 1967 71.1 1.19e7 14526. 17 71.8 0.221 -0.716 ## 5 Austra… Oceania 1972 71.9 1.32e7 16789. 22 73.0 0.195 -1.02 ## 6 Austra… Oceania 1977 73.5 1.41e7 18334. 27 74.1 0.181 -0.604 ## 7 Austra… Oceania 1982 74.7 1.52e7 19477. 32 75.2 0.181 -0.492 ## 8 Austra… Oceania 1987 76.3 1.63e7 21889. 37 76.4 0.195 -0.0508## 9 Austra… Oceania 1992 77.6 1.75e7 23425. 42 77.5 0.221 0.0505## 10 Austra… Oceania 1997 78.8 1.86e7 26998. 47 78.6 0.255 0.182 ## 11 Austra… Oceania 2002 80.4 1.95e7 30688. 52 79.8 0.294 0.583 ## 12 Austra… Oceania 2007 81.2 2.04e7 34435. 57 80.9 0.337 0.310 ## # … with 4 more variables: .hat <dbl>, .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>
ggplot(data = oz_aug, aes(x = year, y = .fitted)) + geom_line(colour = "blue") + geom_point(aes(x = year, y = lifeExp))
ggplot(data = oz_aug, aes(x = year, y = .std.resid)) + geom_hline(yintercept = 0, colour = "white", size = 2) + geom_line()
nz <- gap %>% filter(country == "New Zealand")nz_lm <- lm(lifeExp ~ year1950, data = nz)nz_lm
## ## Call:## lm(formula = lifeExp ~ year1950, data = nz)## ## Coefficients:## (Intercept) year1950 ## 68.3013 0.1928
japan <- gap %>% filter(country == "Japan")japan_lm <- lm(lifeExp ~ year1950, data = japan)japan_lm
## ## Call:## lm(formula = lifeExp ~ year1950, data = japan)## ## Coefficients:## (Intercept) year1950 ## 64.4162 0.3529
italy <- gap %>% filter(country == "Italy")italy_lm <- lm(lifeExp ~ year1950, data = italy)italy_lm
## ## Call:## lm(formula = lifeExp ~ year1950, data = italy)## ## Coefficients:## (Intercept) year1950 ## 66.0574 0.2697
by_country <- gap %>% select(country, year1950, lifeExp, continent) %>% group_by(country, continent) %>% nest()by_country
## # A tibble: 142 x 3## country continent data ## <fct> <fct> <list> ## 1 Afghanistan Asia <tibble [12 × 2]>## 2 Albania Europe <tibble [12 × 2]>## 3 Algeria Africa <tibble [12 × 2]>## 4 Angola Africa <tibble [12 × 2]>## 5 Argentina Americas <tibble [12 × 2]>## 6 Australia Oceania <tibble [12 × 2]>## 7 Austria Europe <tibble [12 × 2]>## 8 Bahrain Asia <tibble [12 × 2]>## 9 Bangladesh Asia <tibble [12 × 2]>## 10 Belgium Europe <tibble [12 × 2]>## # … with 132 more rows
data
?by_country$data[[1]]
## # A tibble: 12 x 2## year1950 lifeExp## <dbl> <dbl>## 1 2 28.8## 2 7 30.3## 3 12 32.0## 4 17 34.0## 5 22 36.1## 6 27 38.4## 7 32 39.9## 8 37 40.8## 9 42 41.7## 10 47 41.8## 11 52 42.1## 12 57 43.8
data
?by_country$data[[1]]
## # A tibble: 12 x 2## year1950 lifeExp## <dbl> <dbl>## 1 2 28.8## 2 7 30.3## 3 12 32.0## 4 17 34.0## 5 22 36.1## 6 27 38.4## 7 32 39.9## 8 37 40.8## 9 42 41.7## 10 47 41.8## 11 52 42.1## 12 57 43.8
lm_afganistan <- lm(lifeExp ~ year1950, data = by_country$data[[1]])lm_albania <- lm(lifeExp ~ year1950, data = by_country$data[[2]])lm_algeria <- lm(lifeExp ~ year1950, data = by_country$data[[3]])
lm_afganistan <- lm(lifeExp ~ year1950, data = by_country$data[[1]])lm_albania <- lm(lifeExp ~ year1950, data = by_country$data[[2]])lm_algeria <- lm(lifeExp ~ year1950, data = by_country$data[[3]])
map(<data object>, <function>)
mapped_lm <- map(by_country$data, function(x){ lm(lifeExp ~ year1950, data = x) })mapped_lm
## [[1]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 29.3566 0.2753 ## ## ## [[2]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 58.5598 0.3347 ## ## ## [[3]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.2364 0.5693 ## ## ## [[4]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 31.7080 0.2093 ## ## ## [[5]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 62.2250 0.2317 ## ## ## [[6]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 67.9451 0.2277 ## ## ## [[7]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.964 0.242 ## ## ## [[8]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 51.8142 0.4675 ## ## ## [[9]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 35.1392 0.4981 ## ## ## [[10]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 67.4738 0.2091 ## ## ## [[11]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 38.9200 0.3342 ## ## ## [[12]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 37.7566 0.4999 ## ## ## [[13]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 57.3901 0.3498 ## ## ## [[14]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 52.80778 0.06067 ## ## ## [[15]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 50.7319 0.3901 ## ## ## [[16]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.4459 0.1457 ## ## ## [[17]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 33.957 0.364 ## ## ## [[18]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 40.2704 0.1541 ## ## ## [[19]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 36.2236 0.3959 ## ## ## [[20]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 40.7492 0.2501 ## ## ## [[21]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 68.4461 0.2189 ## ## ## [[22]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 38.4417 0.1839 ## ## ## [[23]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 39.3029 0.2532 ## ## ## [[24]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 53.3640 0.4768 ## ## ## [[25]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 46.1291 0.5307 ## ## ## [[26]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 52.6656 0.3808 ## ## ## [[27]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 39.0952 0.4504 ## ## ## [[28]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 41.77325 0.09392 ## ## ## [[29]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 46.7466 0.1951 ## ## ## [[30]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 58.2991 0.4028 ## ## ## [[31]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 44.5847 0.1306 ## ## ## [[32]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 63.4049 0.2255 ## ## ## [[33]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 61.5711 0.3212 ## ## ## [[34]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 67.2384 0.1448 ## ## ## [[35]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 70.7909 0.1213 ## ## ## [[36]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 35.5423 0.3674 ## ## ## [[37]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 47.6555 0.4712 ## ## ## [[38]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 48.0653 0.5001 ## ## ## [[39]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 39.8571 0.5555 ## ## ## [[40]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 45.5577 0.4771 ## ## ## [[41]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 33.8100 0.3102 ## ## ## [[42]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 34.9459 0.3747 ## ## ## [[43]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 35.4138 0.3072 ## ## ## [[44]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.9731 0.2379 ## ## ## [[45]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 67.3131 0.2385 ## ## ## [[46]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 38.0419 0.4467 ## ## ## [[47]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 27.2367 0.5818 ## ## ## [[48]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 67.1408 0.2137 ## ## ## [[49]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.8493 0.3217 ## ## ## [[50]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 66.5824 0.2424 ## ## ## [[51]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 41.0569 0.5313 ## ## ## [[52]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 30.7073 0.4248 ## ## ## [[53]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 31.1935 0.2718 ## ## ## [[54]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 38.4520 0.3971 ## ## ## [[55]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 41.9067 0.5429 ## ## ## [[56]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 62.697 0.366 ## ## ## [[57]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.7455 0.1236 ## ## ## [[58]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 71.6328 0.1654 ## ## ## [[59]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 38.2591 0.5053 ## ## ## [[60]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 35.6138 0.6346 ## ## ## [[61]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 43.9857 0.4966 ## ## ## [[62]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 49.6430 0.2352 ## ## ## [[63]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 67.1432 0.1991 ## ## ## [[64]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.7662 0.2671 ## ## ## [[65]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 66.0574 0.2697 ## ## ## [[66]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 62.2182 0.2214 ## ## ## [[67]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 64.4162 0.3529 ## ## ## [[68]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.9204 0.5717 ## ## ## [[69]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 46.5890 0.2065 ## ## ## [[70]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 54.2727 0.3164 ## ## ## [[71]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 48.6167 0.5554 ## ## ## [[72]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 56.6257 0.4168 ## ## ## [[73]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 58.165 0.261 ## ## ## [[74]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 47.18789 0.09557 ## ## ## [[75]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 39.64444 0.09599 ## ## ## [[76]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 40.8509 0.6255 ## ## ## [[77]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 35.8606 0.4037 ## ## ## [[78]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 36.4419 0.2342 ## ## ## [[79]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 50.5762 0.4645 ## ## ## [[80]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 32.2976 0.3768 ## ## ## [[81]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 39.1328 0.4464 ## ## ## [[82]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 54.6739 0.3485 ## ## ## [[83]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 52.103 0.451 ## ## ## [[84]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.9490 0.4387 ## ## ## [[85]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 61.656 0.293 ## ## ## [[86]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 41.6059 0.5425 ## ## ## [[87]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 33.7572 0.2245 ## ## ## [[88]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 40.5454 0.4331 ## ## ## [[89]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 46.6720 0.2312 ## ## ## [[90]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 33.3731 0.5293 ## ## ## [[91]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 71.6162 0.1367 ## ## ## [[92]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 68.3013 0.1928 ## ## ## [[93]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 41.9321 0.5565 ## ## ## [[94]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 34.4664 0.3421 ## ## ## [[95]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 37.4434 0.2081 ## ## ## [[96]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 71.9507 0.1319 ## ## ## [[97]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 35.6634 0.7722 ## ## ## [[98]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.9114 0.4058 ## ## ## [[99]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 57.3526 0.3542 ## ## ## [[100]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 62.1671 0.1574 ## ## ## [[101]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 43.2922 0.5277 ## ## ## [[102]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 48.5634 0.4205 ## ## ## [[103]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 64.3885 0.1962 ## ## ## [[104]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 60.4724 0.3372 ## ## ## [[105]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 66.5274 0.2106 ## ## ## [[106]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 53.0778 0.4599 ## ## ## [[107]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 63.6473 0.1574 ## ## ## [[108]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.83361 -0.04583 ## ## ## [[109]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 47.8462 0.3407 ## ## ## [[110]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 39.5149 0.6496 ## ## ## [[111]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 35.7373 0.5047 ## ## ## [[112]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 61.0240 0.2552 ## ## ## [[113]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 30.455 0.214 ## ## ## [[114]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 61.1641 0.3409 ## ## ## [[115]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 66.742 0.134 ## ## ## [[116]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.6853 0.2005 ## ## ## [[117]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 34.2163 0.2296 ## ## ## [[118]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 49.0030 0.1692 ## ## ## [[119]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.9160 0.2809 ## ## ## [[120]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 59.3017 0.2449 ## ## ## [[121]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 37.1086 0.3828 ## ## ## [[122]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 46.19771 0.09507 ## ## ## [[123]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 71.2725 0.1663 ## ## ## [[124]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 69.0093 0.2222 ## ## ## [[125]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 44.9926 0.5544 ## ## ## [[126]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 60.6829 0.3272 ## ## ## [[127]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.7590 0.1747 ## ## ## [[128]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 51.962 0.347 ## ## ## [[129]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 40.2123 0.3826 ## ## ## [[130]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 61.7050 0.1737 ## ## ## [[131]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 43.3796 0.5878 ## ## ## [[132]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 45.0278 0.4972 ## ## ## [[133]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 44.0320 0.1216 ## ## ## [[134]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 68.437 0.186 ## ## ## [[135]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 68.0455 0.1842 ## ## ## [[136]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 65.3751 0.1833 ## ## ## [[137]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 56.8539 0.3297 ## ## ## [[138]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 37.6668 0.6716 ## ## ## [[139]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 42.5962 0.6011 ## ## ## [[140]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 28.9194 0.6055 ## ## ## [[141]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 47.77888 -0.06043 ## ## ## [[142]]## ## Call:## lm(formula = lifeExp ~ year1950, data = x)## ## Coefficients:## (Intercept) year1950 ## 55.40729 -0.09302
country_model <- by_country %>% mutate(model = map(data, function(x){ lm(lifeExp ~ year1950, data = x) }) )country_model
## # A tibble: 142 x 4## country continent data model ## <fct> <fct> <list> <list>## 1 Afghanistan Asia <tibble [12 × 2]> <lm> ## 2 Albania Europe <tibble [12 × 2]> <lm> ## 3 Algeria Africa <tibble [12 × 2]> <lm> ## 4 Angola Africa <tibble [12 × 2]> <lm> ## 5 Argentina Americas <tibble [12 × 2]> <lm> ## 6 Australia Oceania <tibble [12 × 2]> <lm> ## 7 Austria Europe <tibble [12 × 2]> <lm> ## 8 Bahrain Asia <tibble [12 × 2]> <lm> ## 9 Bangladesh Asia <tibble [12 × 2]> <lm> ## 10 Belgium Europe <tibble [12 × 2]> <lm> ## # … with 132 more rows
country_model <- by_country %>% mutate(model = map(data, ~lm(lifeExp ~ year1950, data = .)))country_model
## # A tibble: 142 x 4## country continent data model ## <fct> <fct> <list> <list>## 1 Afghanistan Asia <tibble [12 × 2]> <lm> ## 2 Albania Europe <tibble [12 × 2]> <lm> ## 3 Algeria Africa <tibble [12 × 2]> <lm> ## 4 Angola Africa <tibble [12 × 2]> <lm> ## 5 Argentina Americas <tibble [12 × 2]> <lm> ## 6 Australia Oceania <tibble [12 × 2]> <lm> ## 7 Austria Europe <tibble [12 × 2]> <lm> ## 8 Bahrain Asia <tibble [12 × 2]> <lm> ## 9 Bangladesh Asia <tibble [12 × 2]> <lm> ## 10 Belgium Europe <tibble [12 × 2]> <lm> ## # … with 132 more rows
country_model$model[[1]]
## ## Call:## lm(formula = lifeExp ~ year1950, data = .)## ## Coefficients:## (Intercept) year1950 ## 29.3566 0.2753
tidy(country_model$model[[1]])
## # A tibble: 2 x 5## term estimate std.error statistic p.value## <chr> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 29.4 0.699 42.0 1.40e-12## 2 year1950 0.275 0.0205 13.5 9.84e- 8
tidy(country_model$model[[1]])
## # A tibble: 2 x 5## term estimate std.error statistic p.value## <chr> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 29.4 0.699 42.0 1.40e-12## 2 year1950 0.275 0.0205 13.5 9.84e- 8
tidy(country_model$model[[2]])
## # A tibble: 2 x 5## term estimate std.error statistic p.value## <chr> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 58.6 1.13 51.7 1.79e-13## 2 year1950 0.335 0.0332 10.1 1.46e- 6
tidy(country_model$model[[3]])
## # A tibble: 2 x 5## term estimate std.error statistic p.value## <chr> <dbl> <dbl> <dbl> <dbl>## 1 (Intercept) 42.2 0.756 55.8 8.22e-14## 2 year1950 0.569 0.0221 25.7 1.81e-10
country_model %>% mutate(tidy = map(model, tidy))
## # A tibble: 142 x 5## country continent data model tidy ## <fct> <fct> <list> <list> <list> ## 1 Afghanistan Asia <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 2 Albania Europe <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 3 Algeria Africa <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 4 Angola Africa <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 5 Argentina Americas <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 6 Australia Oceania <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 7 Austria Europe <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 8 Bahrain Asia <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 9 Bangladesh Asia <tibble [12 × 2]> <lm> <tibble [2 × 5]>## 10 Belgium Europe <tibble [12 × 2]> <lm> <tibble [2 × 5]>## # … with 132 more rows
country_coefs <- country_model %>% mutate(tidy = map(model, tidy)) %>% unnest(tidy) %>% select(country, continent, term, estimate)country_coefs
## # A tibble: 284 x 4## country continent term estimate## <fct> <fct> <chr> <dbl>## 1 Afghanistan Asia (Intercept) 29.4 ## 2 Afghanistan Asia year1950 0.275## 3 Albania Europe (Intercept) 58.6 ## 4 Albania Europe year1950 0.335## 5 Algeria Africa (Intercept) 42.2 ## 6 Algeria Africa year1950 0.569## 7 Angola Africa (Intercept) 31.7 ## 8 Angola Africa year1950 0.209## 9 Argentina Americas (Intercept) 62.2 ## 10 Argentina Americas year1950 0.232## # … with 274 more rows
tidy_country_coefs <- country_coefs %>% spread(key = term, value = estimate) %>% rename(intercept = `(Intercept)`)tidy_country_coefs
## # A tibble: 142 x 4## country continent intercept year1950## <fct> <fct> <dbl> <dbl>## 1 Afghanistan Asia 29.4 0.275## 2 Albania Europe 58.6 0.335## 3 Algeria Africa 42.2 0.569## 4 Angola Africa 31.7 0.209## 5 Argentina Americas 62.2 0.232## 6 Australia Oceania 67.9 0.228## 7 Austria Europe 66.0 0.242## 8 Bahrain Asia 51.8 0.468## 9 Bangladesh Asia 35.1 0.498## 10 Belgium Europe 67.5 0.209## # … with 132 more rows
tidy_country_coefs %>% filter(country == "Australia")
## # A tibble: 1 x 4## country continent intercept year1950## <fct> <fct> <dbl> <dbl>## 1 Australia Oceania 67.9 0.228
country_aug <- country_model %>% mutate(augmented = map(model, augment)) %>% unnest(augmented)country_aug
## # A tibble: 1,704 x 11## country continent lifeExp year1950 .fitted .se.fit .resid .hat .sigma .cooksd## <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>## 1 Afghan… Asia 28.8 2 29.9 0.664 -1.11 0.295 1.21 2.43e-1## 2 Afghan… Asia 30.3 7 31.3 0.580 -0.952 0.225 1.24 1.13e-1## 3 Afghan… Asia 32.0 12 32.7 0.503 -0.664 0.169 1.27 3.60e-2## 4 Afghan… Asia 34.0 17 34.0 0.436 -0.0172 0.127 1.29 1.65e-5## 5 Afghan… Asia 36.1 22 35.4 0.385 0.674 0.0991 1.27 1.85e-2## 6 Afghan… Asia 38.4 27 36.8 0.357 1.65 0.0851 1.15 9.23e-2## 7 Afghan… Asia 39.9 32 38.2 0.357 1.69 0.0851 1.15 9.67e-2## 8 Afghan… Asia 40.8 37 39.5 0.385 1.28 0.0991 1.21 6.67e-2## 9 Afghan… Asia 41.7 42 40.9 0.436 0.754 0.127 1.26 3.17e-2## 10 Afghan… Asia 41.8 47 42.3 0.503 -0.534 0.169 1.27 2.33e-2## # … with 1,694 more rows, and 1 more variable: .std.resid <dbl>
p1 <- gapminder %>% ggplot(aes(year, lifeExp, group = country)) + geom_line(alpha = 1/3) + ggtitle("Data")p2 <- ggplot(country_aug) + geom_line(aes(x = year1950 + 1950, y = .fitted, group = country), alpha = 1/3) + xlab("year") + ggtitle("Fitted models")
grid.arrange(p1, p2, ncol=2)
p <- ggplot(tidy_country_coefs, aes(x = intercept, y = year1950, colour = continent, label = country)) + geom_point(alpha = 0.5, size = 2) + scale_color_brewer(palette = "Dark2")
country_glance <- country_model %>% mutate(glance = map(model, glance)) %>% unnest(glance)country_glance
## # A tibble: 142 x 15## country continent data model r.squared adj.r.squared sigma statistic p.value df## <fct> <fct> <lis> <lis> <dbl> <dbl> <dbl> <dbl> <dbl> <int>## 1 Afghan… Asia <tib… <lm> 0.948 0.942 1.22 181. 9.84e- 8 2## 2 Albania Europe <tib… <lm> 0.911 0.902 1.98 102. 1.46e- 6 2## 3 Algeria Africa <tib… <lm> 0.985 0.984 1.32 662. 1.81e-10 2## 4 Angola Africa <tib… <lm> 0.888 0.877 1.41 79.1 4.59e- 6 2## 5 Argent… Americas <tib… <lm> 0.996 0.995 0.292 2246. 4.22e-13 2## 6 Austra… Oceania <tib… <lm> 0.980 0.978 0.621 481. 8.67e-10 2## 7 Austria Europe <tib… <lm> 0.992 0.991 0.407 1261. 7.44e-12 2## 8 Bahrain Asia <tib… <lm> 0.967 0.963 1.64 291. 1.02e- 8 2## 9 Bangla… Asia <tib… <lm> 0.989 0.988 0.977 930. 3.37e-11 2## 10 Belgium Europe <tib… <lm> 0.995 0.994 0.293 1822. 1.20e-12 2## # … with 132 more rows, and 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,## # deviance <dbl>, df.residual <int>
ggplot(country_glance, aes(x = r.squared)) + geom_histogram()
Examine the countries with the worst fit, countries with R2<0.45, by making scatterplots of the data, with the linear model overlaid.
badfit <- country_glance %>% filter(r.squared <= 0.45)gap_bad <- gap %>% filter(country %in% badfit$country)gg_bad_fit <-ggplot(data = gap_bad, aes(x = year, y = lifeExp)) + geom_point() + facet_wrap(~country) + scale_x_continuous(breaks = seq(1950,2000,10), labels = c("1950", "60","70", "80","90","2000")) + geom_smooth(method = "lm", se = FALSE)
Each of these countries had been moving on a nice trajectory of increasing life expectancy, and then suffered a big dip during the time period.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Open the app available at https://ebsmonash.shinyapps.io/SSregression/. (The original version was obtained from https://github.com/paternogbc/SSregression, developed by Gustavo Brant Paterno, a PhD student from Brazil.)
The app simulates some data using different slopes and error variance. It allows you to see how characteristics of the data affect model summaries. Time to play!
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |