class: center, middle, inverse, title-slide # ETC1010: Data Modelling and Computing ## Week of Tidy Data: Lecture 2 ### Dr. Nicholas Tierney & Professor Di Cook ### EBS, Monash U. ### 2019-08-09 --- class: bg-blue .vvvhuge.white.center.middle[ What is this song? ] .huge.white.center.middle[ (you can use your phone!) ] --- # recap: from ED survey .large.pull-left[ - Traffic Light System: .green[Green = "good!"] ; .red[Red = "Help!"] - R + Rstudio - Tower of babel analogy for writing R code - We are using ___, not ___ for ETC1010? - Functions are ___ - columns in data frames are accessed with ___ ? ] .large.pull-right[ - packages are installed with ___ ? - packages are loaded with ___ ? - Why do we care about Reproducibility? - Output + input of rmarkdown - I have an assignment group - If I have an assignment group, have recorded my assignment group in the ED survey ] --- background-image: url(https://njtierney.updog.co/img/allison-horst-dplyr-wrangling.png) background-size: contain background-position: 50% 50% class: center, bottom, white .black.large[ Source: Artwork by @allison_horst ] --- class: bg-main3 # Overview .vhuge.pull-left[ - `filter()` - `select()` - `mutate()` - `arrange()` ] .vhuge.pull-right[ - `group_by()` - `summarise()` - `count()` ] --- background-image: url(https://njtierney.updog.co/img/allison-horst-tidyverse-celestial.png) background-size: contain background-position: 50% 50% class: center, bottom, bg-black .left.white.large[ Artwork by @allison_horst ] --- class: bg-black .huge.white[ R Packages ] .huge[ ```r avail_pkg <- available.packages() dim(avail_pkg) ``` ``` ## [1] 14738 17 ``` ] .vhuge.white[ As of 2019-08-09 there are 14738 R packages available ] --- # Name clashes ```r library(tidyverse) ``` ``` ## ── Attaching packages ────────────────────────────────────────────── tidyverse 1.2.1 ── ``` ``` ## ✔ ggplot2 3.2.0 ✔ purrr 0.3.2 ## ✔ tibble 2.1.3 ✔ dplyr 0.8.3 ## ✔ tidyr 0.8.3 ✔ stringr 1.4.0 ## ✔ readr 1.3.1 ✔ forcats 0.4.0 ``` ``` ## ── Conflicts ───────────────────────────────────────────────── tidyverse_conflicts() ── ## ✖ dplyr::filter() masks stats::filter() ## ✖ dplyr::lag() masks stats::lag() ``` --- class: bg-main3 # Many R packages .huge[ - A blessing & a curse! - So many packages available, it can make it hard to choose! - Many of the packages are designed to solve a specific problem - The tidyverse is designed to work with many other packages following a consistent philosophy - What this means is that you shouldn't notice it! ] ??? Extra reading: We have been loading the `tidyverse` package. Its actually a suite of packages, and you can learn more about the individual packages at https://www.tidyverse.org. You could load each individually. Because so many people contribute packages to R, it is a blessing and a curse. ??? The best techniques are available, but there can be conflicts between function names. When you load tidyverse it prints a great summary of conflicts that it knows about, between its functions and others. For example, there is a `filter` function in the `stats` package that comes with the R distribution. This can cause confusion when you want to use the filter function in `dplyr` (part of tidyverse). To be sure the function you use is the one you want to use, you can prefix it with the package name, `dplyr::filter()`. --- class: bg-main3 center middle .vvhuge[ Let's talk about data ] --- background-image: url(https://njtierney.updog.co/img/french-fries.png) background-size: contain background-position: 50% 50% class: center, bottom, white ??? This was an actual experiment in Food Sciences at Iowa State University. The goal was to find out if some cheaper oil options could be used to make hot chips: that people would not be able to distinguish the difference between chips fried in the new oils relative to those fried in the current market leader. Twelve tasters were recruited to sample two chips from each batch, over a period of ten weeks. The same oil was kept for a period of 10 weeks! May be a bit gross by the end! This data set was brought to R by Hadley Wickham, and was one of the problems that inspired the thinking about tidy data and the plyr tools. --- # Example: french fries .huge[ * Experiment in Food Sciences at Iowa State University. * Aim: find if cheaper oil could be used to make hot chips * Question: Can people distinguish between chips fried in the new oils relative to those current market leader oil. * 12 tasters recruited * Each sampled two chips from each batch * Over a period of ten weeks. Same oil kept for a period of 10 weeks! May be a bit gross! ] --- class: bg-main1 # Example: french-fries - gathering into long form ```r french_fries <- read_csv("data/french_fries.csv") french_fries ``` ``` ## # A tibble: 6 x 9 ## time treatment subject rep potato buttery grassy rancid painty ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 1 1 3 1 2.9 0 0 0 5.5 ## 2 1 1 3 2 14 0 0 1.1 0 ## 3 1 1 10 1 11 6.4 0 0 0 ## 4 1 1 10 2 9.9 5.9 2.9 2.2 0 ## 5 1 1 15 1 1.2 0.1 0 1.1 5.1 ## 6 1 1 15 2 8.8 3 3.6 1.5 2.3 ``` -- .huge[ This data set was brought to R by Hadley Wickham, and was one of the problems that inspired the thinking about tidy data and the plyr tools. ] --- class: bg-main2 # French fries - gathering into long form .left-code[ ```r fries_long <- french_fries %>% gather(key = type, value = rating, -time, -treatment, -subject, -rep) ``` ] -- .right-plot[ ```r fries_long ``` ``` ## # A tibble: 3,480 x 6 ## time treatment subject rep type rating ## <dbl> <dbl> <dbl> <dbl> <fct> <dbl> ## 1 1 1 3 1 potato 2.9 ## 2 1 1 3 2 potato 14 ## 3 1 1 10 1 potato 11 ## 4 1 1 10 2 potato 9.9 ## 5 1 1 15 1 potato 1.2 ## 6 1 1 15 2 potato 8.8 ## 7 1 1 16 1 potato 9 ## 8 1 1 16 2 potato 8.2 ## 9 1 1 19 1 potato 7 ## 10 1 1 19 2 potato 13 ## # … with 3,470 more rows ``` ] --- class: bg-main3 # `filter()`: choose observations from your data --- class: bg-main5 # `filter()`: example ```r fries_long %>% filter(subject == 10) ``` ``` ## # A tibble: 300 x 6 ## time treatment subject rep type rating ## <dbl> <dbl> <dbl> <dbl> <fct> <dbl> ## 1 1 1 10 1 potato 11 ## 2 1 1 10 2 potato 9.9 ## 3 1 2 10 1 potato 9.3 ## 4 1 2 10 2 potato 11 ## 5 1 3 10 1 potato 11.3 ## 6 1 3 10 2 potato 10.1 ## 7 2 1 10 1 potato 8 ## 8 2 1 10 2 potato 10.2 ## 9 2 2 10 1 potato 11.2 ## 10 2 2 10 2 potato 8.2 ## # … with 290 more rows ``` --- class: bg-main5 # `filter()`: details .huge[ Filtering requires comparison to find the subset of observations of interest. What do you think the following mean? - `subject != 10` - `x > 10` - `x >= 10` - `class %in% c("A", "B")` - `!is.na(y)` ] ```r countdown(minutes = 3, play_sound = TRUE) ```
03
:
00
--- class: bg-main5 # `filter()`: details .huge[ `subject != 10` ] -- .huge[ Find rows corresponding to all subjects except subject 10 ] --- class: bg-main5 # `filter()`: details .huge[ `x > 10` ] -- .huge[ find all rows where variable `x` has values bigger than 10 ] --- class: bg-main5 # `filter()`: details .huge[ `x >= 10` ] -- .huge[ finds all rows variable `x` is greater than or equal to 10. ] --- class: bg-main5 # `filter()`: details .huge[ `class %in% c("A", "B")` ] -- .huge[ finds all rows where variable `class` is either A or B ] --- class: bg-main5 # `filter()`: details .huge[ `!is.na(y)` ] -- .huge[ finds all rows that *DO NOT* have a missing value for variable `y` ] --- class: bg-main1 # Your turn: open french-fries.Rmd .huge[ Filter the french fries data to have: - only week 1 - oil type 1 (oil type is called treatment) - oil types 1 and 3 but not 2 - weeks 1-4 only ] --- class: bg-main2 # French Fries Filter: only week 1 ```r fries_long %>% filter(time == 1) ``` ``` ## # A tibble: 360 x 6 ## time treatment subject rep type rating ## <dbl> <dbl> <dbl> <dbl> <fct> <dbl> ## 1 1 1 3 1 potato 2.9 ## 2 1 1 3 2 potato 14 ## 3 1 1 10 1 potato 11 ## 4 1 1 10 2 potato 9.9 ## 5 1 1 15 1 potato 1.2 ## 6 1 1 15 2 potato 8.8 ## 7 1 1 16 1 potato 9 ## 8 1 1 16 2 potato 8.2 ## 9 1 1 19 1 potato 7 ## 10 1 1 19 2 potato 13 ## # … with 350 more rows ``` --- class: bg-main2 # French Fries Filter: oil type 1 ```r fries_long %>% filter(treatment == 1) ``` ``` ## # A tibble: 1,160 x 6 ## time treatment subject rep type rating ## <dbl> <dbl> <dbl> <dbl> <fct> <dbl> ## 1 1 1 3 1 potato 2.9 ## 2 1 1 3 2 potato 14 ## 3 1 1 10 1 potato 11 ## 4 1 1 10 2 potato 9.9 ## 5 1 1 15 1 potato 1.2 ## 6 1 1 15 2 potato 8.8 ## 7 1 1 16 1 potato 9 ## 8 1 1 16 2 potato 8.2 ## 9 1 1 19 1 potato 7 ## 10 1 1 19 2 potato 13 ## # … with 1,150 more rows ``` --- class: bg-main2 # French Fries Filter: oil types 1 and 3 but not 2 ```r fries_long %>% filter(treatment != 2) ``` ``` ## # A tibble: 2,320 x 6 ## time treatment subject rep type rating ## <dbl> <dbl> <dbl> <dbl> <fct> <dbl> ## 1 1 1 3 1 potato 2.9 ## 2 1 1 3 2 potato 14 ## 3 1 1 10 1 potato 11 ## 4 1 1 10 2 potato 9.9 ## 5 1 1 15 1 potato 1.2 ## 6 1 1 15 2 potato 8.8 ## 7 1 1 16 1 potato 9 ## 8 1 1 16 2 potato 8.2 ## 9 1 1 19 1 potato 7 ## 10 1 1 19 2 potato 13 ## # … with 2,310 more rows ``` --- class: bg-main2 # French Fries Filter: weeks 1-4 only ```r fries_long %>% filter(time %in% c("1", "2", "3", "4")) ``` ``` ## # A tibble: 1,440 x 6 ## time treatment subject rep type rating ## <dbl> <dbl> <dbl> <dbl> <fct> <dbl> ## 1 1 1 3 1 potato 2.9 ## 2 1 1 3 2 potato 14 ## 3 1 1 10 1 potato 11 ## 4 1 1 10 2 potato 9.9 ## 5 1 1 15 1 potato 1.2 ## 6 1 1 15 2 potato 8.8 ## 7 1 1 16 1 potato 9 ## 8 1 1 16 2 potato 8.2 ## 9 1 1 19 1 potato 7 ## 10 1 1 19 2 potato 13 ## # … with 1,430 more rows ``` --- class: bg-main1 # about `%in%` .gigantic[ [demo] ] --- class: bg-main2 # `select()` -- .huge[ - Chooses which variables to keep in the data set. - Useful when there are many variables but you only need some of them for an analysis. ] --- class: bg-main2 # `select()`: a comma separated list of variables, by name. ```r french_fries %>% select(time, treatment, subject) ``` ``` ## # A tibble: 696 x 3 ## time treatment subject ## <dbl> <dbl> <dbl> ## 1 1 1 3 ## 2 1 1 3 ## 3 1 1 10 ## 4 1 1 10 ## 5 1 1 15 ## 6 1 1 15 ## 7 1 1 16 ## 8 1 1 16 ## 9 1 1 19 ## 10 1 1 19 ## # … with 686 more rows ``` --- class: bg-main2 # `select()`: **drop** selected variables by prefixing with `-` -- ```r french_fries %>% select(-time, -treatment, -subject) ``` ``` ## # A tibble: 696 x 6 ## rep potato buttery grassy rancid painty ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 1 2.9 0 0 0 5.5 ## 2 2 14 0 0 1.1 0 ## 3 1 11 6.4 0 0 0 ## 4 2 9.9 5.9 2.9 2.2 0 ## 5 1 1.2 0.1 0 1.1 5.1 ## 6 2 8.8 3 3.6 1.5 2.3 ## 7 1 9 2.6 0.4 0.1 0.2 ## 8 2 8.2 4.4 0.3 1.4 4 ## 9 1 7 3.2 0 4.9 3.2 ## 10 2 13 0 3.1 4.3 10.3 ## # … with 686 more rows ``` --- class: bg-main2 # `select()`: Using it .vlarge.left-code[ Inside `select()` you can use text-matching of the names like `starts_with()`, `ends_with()`, `contains()`, `matches()`, or `everything()` ] -- .right-plot[ ```r french_fries %>% select(contains("e")) ``` ``` ## # A tibble: 696 x 5 ## time treatment subject rep buttery ## <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 1 1 3 1 0 ## 2 1 1 3 2 0 ## 3 1 1 10 1 6.4 ## 4 1 1 10 2 5.9 ## 5 1 1 15 1 0.1 ## 6 1 1 15 2 3 ## 7 1 1 16 1 2.6 ## 8 1 1 16 2 4.4 ## 9 1 1 19 1 3.2 ## 10 1 1 19 2 0 ## # … with 686 more rows ``` ] --- class: bg-main2 # `select()`: Using it .huge.left-code[ You can use `:` to choose variables in order of the columns ] -- .right-plot[ ```r french_fries %>% select(time:subject) ``` ``` ## # A tibble: 696 x 3 ## time treatment subject ## <dbl> <dbl> <dbl> ## 1 1 1 3 ## 2 1 1 3 ## 3 1 1 10 ## 4 1 1 10 ## 5 1 1 15 ## 6 1 1 15 ## 7 1 1 16 ## 8 1 1 16 ## 9 1 1 19 ## 10 1 1 19 ## # … with 686 more rows ``` ] --- class: bg-main5 # Your turn: back to the french fries data .huge[ - `select()` time, treatment and rep - `select()` subject through to rating - drop subject ]
03
:
00
--- background-image: url(https://njtierney.updog.co/img/allison-horst-dplyr-mutate.png) background-size: contain background-position: 50% 50% class: center, bottom, white .purple.large.right[ Artwork by @allison_horst ] --- class: bg-main4 # `mutate()`: create a new variable; keep existing ones ```r french_fries ``` ``` ## # A tibble: 696 x 9 ## time treatment subject rep potato buttery grassy rancid painty ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 1 1 3 1 2.9 0 0 0 5.5 ## 2 1 1 3 2 14 0 0 1.1 0 ## 3 1 1 10 1 11 6.4 0 0 0 ## 4 1 1 10 2 9.9 5.9 2.9 2.2 0 ## 5 1 1 15 1 1.2 0.1 0 1.1 5.1 ## 6 1 1 15 2 8.8 3 3.6 1.5 2.3 ## 7 1 1 16 1 9 2.6 0.4 0.1 0.2 ## 8 1 1 16 2 8.2 4.4 0.3 1.4 4 ## 9 1 1 19 1 7 3.2 0 4.9 3.2 ## 10 1 1 19 2 13 0 3.1 4.3 10.3 ## # … with 686 more rows ``` --- class: bg-main4 # `mutate()`: create a new variable; keep existing ones ```r french_fries %>% * mutate(rainty = rancid + painty) ``` ``` ## # A tibble: 696 x 10 ## time treatment subject rep potato buttery grassy rancid painty rainty ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 1 1 3 1 2.9 0 0 0 5.5 5.5 ## 2 1 1 3 2 14 0 0 1.1 0 1.1 ## 3 1 1 10 1 11 6.4 0 0 0 0 ## 4 1 1 10 2 9.9 5.9 2.9 2.2 0 2.2 ## 5 1 1 15 1 1.2 0.1 0 1.1 5.1 6.20 ## 6 1 1 15 2 8.8 3 3.6 1.5 2.3 3.8 ## 7 1 1 16 1 9 2.6 0.4 0.1 0.2 0.3 ## 8 1 1 16 2 8.2 4.4 0.3 1.4 4 5.4 ## 9 1 1 19 1 7 3.2 0 4.9 3.2 8.1 ## 10 1 1 19 2 13 0 3.1 4.3 10.3 14.6 ## # … with 686 more rows ``` --- class: bg-main3 # Your turn: french fries .huge[ Compute a new variable called `lrating` by taking a log of the rating ]
02
:
00
--- class: bg-main2 # `summarise()`: boil data down to one row observation ```r fries_long ``` ``` ## # A tibble: 6 x 6 ## time treatment subject rep type rating ## <dbl> <dbl> <dbl> <dbl> <fct> <dbl> ## 1 1 1 3 1 potato 2.9 ## 2 1 1 3 2 potato 14 ## 3 1 1 10 1 potato 11 ## 4 1 1 10 2 potato 9.9 ## 5 1 1 15 1 potato 1.2 ## 6 1 1 15 2 potato 8.8 ``` -- ```r fries_long %>% summarise(rating = mean(rating, na.rm = TRUE)) ``` ``` ## # A tibble: 1 x 1 ## rating ## <dbl> ## 1 3.16 ``` --- class: bg-main1 .vhuge[ But what if we want to get a summary for each `type`? ] -- .vvhuge[ use `group_by()` ] --- class: bg-main1 # Using `summarise()` + `group_by()` .huge[ Produce summaries for every group: ] ```r fries_long %>% group_by(type) %>% summarise(rating = mean(rating, na.rm=TRUE)) ``` ``` ## # A tibble: 5 x 2 ## type rating ## <fct> <dbl> ## 1 buttery 1.82 ## 2 grassy 0.664 ## 3 painty 2.52 ## 4 potato 6.95 ## 5 rancid 3.85 ``` --- class: bg-main1 # Your turn: Back to french-fries.Rmd .huge[ - Compute the average rating by subject - Compute the average rancid rating per week ]
03
:
00
--- class: bg-main1 # french fries answers ```r fries_long %>% group_by(subject) %>% summarise(rating = mean(rating, na.rm=TRUE)) ``` ``` ## # A tibble: 12 x 2 ## subject rating ## <dbl> <dbl> ## 1 3 2.46 ## 2 10 4.24 ## 3 15 2.16 ## 4 16 3.00 ## 5 19 4.54 ## 6 31 4.00 ## 7 51 4.39 ## 8 52 2.72 ## 9 63 3.48 ## 10 78 1.94 ## 11 79 1.94 ## 12 86 2.94 ``` --- class: bg-main1 # french fries answers ```r fries_long %>% filter(type == "rancid") %>% group_by(time) %>% summarise(rating = mean(rating, na.rm=TRUE)) ``` ``` ## # A tibble: 10 x 2 ## time rating ## <dbl> <dbl> ## 1 1 2.36 ## 2 2 2.85 ## 3 3 3.72 ## 4 4 3.60 ## 5 5 3.53 ## 6 6 4.08 ## 7 7 3.89 ## 8 8 4.27 ## 9 9 4.67 ## 10 10 6.07 ``` --- class: bg-main1 # `arrange()`: orders data by a given variable. -- .huge[ Useful for display of results (but there are other uses!) ] ```r fries_long %>% group_by(type) %>% summarise(rating = mean(rating, na.rm=TRUE)) ``` ``` ## # A tibble: 5 x 2 ## type rating ## <fct> <dbl> ## 1 buttery 1.82 ## 2 grassy 0.664 ## 3 painty 2.52 ## 4 potato 6.95 ## 5 rancid 3.85 ``` --- class: bg-main1 # `arrange()` ```r fries_long %>% group_by(type) %>% summarise(rating = mean(rating, na.rm=TRUE)) %>% arrange(rating) ``` ``` ## # A tibble: 5 x 2 ## type rating ## <fct> <dbl> ## 1 grassy 0.664 ## 2 buttery 1.82 ## 3 painty 2.52 ## 4 rancid 3.85 ## 5 potato 6.95 ``` --- class: bg-main1 # Your turn: french-fries.Rmd - arrange .huge[ - Arrange the average rating by type in decreasing order - Arrange the average subject rating in order lowest to highest. ]
02
:
00
--- class: bg-main1 # `arrange()` answers ```r fries_long %>% group_by(type) %>% summarise(rating = mean(rating, na.rm=TRUE)) %>% arrange(desc(rating)) ``` ``` ## # A tibble: 5 x 2 ## type rating ## <fct> <dbl> ## 1 potato 6.95 ## 2 rancid 3.85 ## 3 painty 2.52 ## 4 buttery 1.82 ## 5 grassy 0.664 ``` --- class: bg-main1 # `arrange()` answers ```r fries_long %>% group_by(subject) %>% summarise(rating = mean(rating, na.rm=TRUE)) %>% arrange(rating) ``` ``` ## # A tibble: 12 x 2 ## subject rating ## <dbl> <dbl> ## 1 78 1.94 ## 2 79 1.94 ## 3 15 2.16 ## 4 3 2.46 ## 5 52 2.72 ## 6 86 2.94 ## 7 16 3.00 ## 8 63 3.48 ## 9 31 4.00 ## 10 10 4.24 ## 11 51 4.39 ## 12 19 4.54 ``` --- class: bg-main2 # `count()` the number of things in a given column ```r fries_long %>% count(type, sort = TRUE) ``` ``` ## # A tibble: 5 x 2 ## type n ## <fct> <int> ## 1 buttery 696 ## 2 grassy 696 ## 3 painty 696 ## 4 potato 696 ## 5 rancid 696 ``` --- class: bg-main1 # Your turn: `count()` .huge[ - count the number of subjects - count the number of types ]
02
:
00
--- class: middle center bg-black .vvhuge.white[ French Fries: Putting it together to problem solve ] --- class: bg-main1 # French Fries: Are ratings similar? .pull-left[ ```r fries_long %>% group_by(type) %>% summarise(m = mean(rating, na.rm = TRUE), sd = sd(rating, na.rm = TRUE)) %>% arrange(-m) ``` ``` ## # A tibble: 5 x 3 ## type m sd ## <fct> <dbl> <dbl> ## 1 potato 6.95 3.58 ## 2 rancid 3.85 3.78 ## 3 painty 2.52 3.39 ## 4 buttery 1.82 2.41 ## 5 grassy 0.664 1.32 ``` ] -- .pull-right.huge[ The scales of the ratings are quite different. Mostly the chips are rated highly on potato'y, but low on grassy. ] --- # French Fries: Are ratings similar? ```r ggplot(fries_long, aes(x = type, y = rating)) + geom_boxplot() ``` <img src="lecture-2b-slides_files/figure-html/plot-fries-type-rating-1.png" style="display: block; margin: auto;" /> --- class: bg-main1 # French Fries: Are reps like each other? ```r fries_spread <- fries_long %>% spread(key = rep, value = rating) fries_spread ``` ``` ## # A tibble: 1,740 x 6 ## time treatment subject type `1` `2` ## <dbl> <dbl> <dbl> <fct> <dbl> <dbl> ## 1 1 1 3 buttery 0 0 ## 2 1 1 3 grassy 0 0 ## 3 1 1 3 painty 5.5 0 ## 4 1 1 3 potato 2.9 14 ## 5 1 1 3 rancid 0 1.1 ## 6 1 1 10 buttery 6.4 5.9 ## 7 1 1 10 grassy 0 2.9 ## 8 1 1 10 painty 0 0 ## 9 1 1 10 potato 11 9.9 ## 10 1 1 10 rancid 0 2.2 ## # … with 1,730 more rows ``` --- class: bg-main1 # French Fries: Are reps like each other? ```r summarise(fries_spread, r = cor(`1`, `2`, use = "complete.obs")) ``` ``` ## # A tibble: 1 x 1 ## r ## <dbl> ## 1 0.668 ``` --- ```r ggplot(fries_spread, aes(x = `1`, y = `2`)) + geom_point() + labs(title = "Data is poor quality: the replicates do not look like each other!") ``` <img src="lecture-2b-slides_files/figure-html/fries-spread-plot-1.png" width="80%" style="display: block; margin: auto;" /> --- <img src="lecture-2b-slides_files/figure-html/fries-spread-plot-out-1.png" width="0%" style="display: block; margin: auto;" /> --- class: bg-main1 # French Fries: Replicates by rating type .large[ ```r fries_spread %>% group_by(type) %>% summarise(r = cor(x = `1`, y = `2`, use = "complete.obs")) ``` ``` ## # A tibble: 5 x 2 ## type r ## <fct> <dbl> ## 1 buttery 0.650 ## 2 grassy 0.239 ## 3 painty 0.479 ## 4 potato 0.616 ## 5 rancid 0.391 ``` ] --- # French Fries: Replicates by rating type ```r ggplot(fries_spread, aes(x=`1`, y=`2`)) + geom_point() + facet_wrap(~type, ncol = 5) ``` <img src="lecture-2b-slides_files/figure-html/plot-fries-facet-type-1.png" width="90%" style="display: block; margin: auto;" /> -- .huge[ Potato'y and buttery have better replication than the other scales, but there is still a lot of variation from rep 1 to 2. ] --- <iframe width="1040" height="650" src="https://www.youtube.com/embed/i4RGqzaNEtg" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> --- class: bg-main1 # Lab exercise: Exploring data PISA data .vhuge[ Open `pisa.Rmd` on rstudio cloud. ] --- ## Lab Quiz .vhuge[ Time to take the lab quiz. ] --- ## Share and share alike <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. ??? # `select()` example ```r tb <- read_csv("data/TB_notifications_2018-03-18.csv") %>% select(country, year, starts_with("new_sp_")) tb %>% top_n(20) ``` ``` ## # A tibble: 22 x 22 ## country year new_sp_m04 new_sp_m514 new_sp_m014 new_sp_m1524 ## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 Argent… 2008 11 58 69 633 ## 2 Argent… 2009 8 36 44 546 ## 3 Argent… 2011 50 93 143 664 ## 4 Argent… 2012 8 51 59 533 ## 5 Brazil 2010 130 168 298 4405 ## 6 Brazil 2012 112 165 277 5027 ## 7 Centra… 2010 23 55 78 379 ## 8 Centra… 2011 14 56 70 362 ## 9 Guinea… 2012 1 6 7 145 ## 10 Italy 2005 7 1 8 93 ## # … with 12 more rows, and 16 more variables: new_sp_m2534 <dbl>, ## # new_sp_m3544 <dbl>, new_sp_m4554 <dbl>, new_sp_m5564 <dbl>, ## # new_sp_m65 <dbl>, new_sp_mu <dbl>, new_sp_f04 <dbl>, ## # new_sp_f514 <dbl>, new_sp_f014 <dbl>, new_sp_f1524 <dbl>, ## # new_sp_f2534 <dbl>, new_sp_f3544 <dbl>, new_sp_f4554 <dbl>, ## # new_sp_f5564 <dbl>, new_sp_f65 <dbl>, new_sp_fu <dbl> ```